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SUMMARY

A coefficient is obtained for determining the effect
of a reinforcing stringer on the stress concentration
factor at the tip of a crack in a thin sheet. The
results are given for the case in which the stringer is
intact and for the case in whick the stringer is breken.
In the first case the stress concentration factor for
the stringer 1s also given.

INTRODUCTION

Some damage to aircraft structures due to
fatigue or accident is statistically inevitable; thus,
the fail-safe concept has entered into design con-
siderations. One of the problems associated with
this concept is the determination of the static
strength of cracked parts. The mechanism of
static failure of a structure weakened by the pres-
ence of a crack is by no means completely under-
stood at the present time. However, an engineer-
ing theory which scems to hold some promise has
recently become available (ref. 1). In this theory
the significant quantity determining the strength
of the eracked structure is the stress concentration
factor at the end of the crack (corrected for plas-
ticity and the so-called size effect). The funda-
mental information needed to apply the method
is the stress concentration factor obtained from
elasticity theory.

For many configurations an exact solution for
the stress distribution from the theory of elastic-
ity is very difficult to obtain. However, a con-
siderable amount of information that is useful and

1 Supersedes NACA Treehnical Note 4207 hy T, Lyell Randers, Jr,, 1958,
300397 ---59

adequate for practical applications has been ob-
tained by making various idealizations and simpli-
fications of the problems. As a further contribu-
tion, the results contained in the present papor
were obtained.

The problem considered in the present paper is
the determination of the relieving effect of a re-
inforcing stringer on the stress concentration at
the tip of a crack in a thin sheet. The erack runs
pervendicular to the stringer and extends an equal
distance on either side of it. The state of stress
in the sheet far away from the crack is a tensile
stress parallel to the stringer. The stress con-
centration factor for a crack in a thin sheet may
be determined from a known formula. (Sce ref.
1.)  The factor by which this known result can
be multiplied in order to correct for the presence
of the reinforcing stringer is determined in the
present paper. The stress conecentration factor
in the stringer due to the erack and the correce-
tion factor for the crack in the case in which the
stringer is broken are also found in the analysis.
The results are presented graphieally and in tabu-
lar form.

SYMBOLS
A cross-sectional area of stringer
B function defined in equation (30)
b length of erack on one side of
stringer
C ratio between stress concentration

factors for a eracked sheet with
and without a stringer
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corresponds to (7 in case where
stringer is broken

Young’s modulus for sheet ma-
terial

Young's modulus for stringer ma-
terial

analytic function defined in equa-
tion (11)

shear modulus for sheet material

stress function (see eqs. (2))

modified Bessel functions of first
kind

modified Bessel functions of second
kind

Struve functions of
argument

load in stringer at its intersection
with erack

load econcentration
stringer, PE/c AFE,,

real part of and imaginary part of

dummy variable of integration

sheet thickness

displacement in x;-direction

dimensionless coordinates (sce eqs.
)

physical coordinates

complex variable, ry

Euler’s constant, 0.57722

complex variables

dummy variable

similarity parameter, 20¢//AE,

direet stress in sheet at infinity

direct and shear stresses in sheet

direct stress in sheet with a erack
but without a stringer

analy tic function, ¢4y

corresponds to @ for a sheet with-
out a stringer

dimensionless stress function (see
eqs. (4))

dimensionless
eqs. (4))

imaginary

factor for

displacement  (see

Primes indicate differentiation and the nota-
tion ~indicates an asvmptotic relationship.

ANALYSIS

Two simplifications of the problem are made in

the present analysis.

One simplification is that

the sheet 1s assumed inextensional in the direction
parallel to the crack. This orthotropic sheet was
introduced by Hildebrand (ref. 2) and greatly
simplifies the equations of plane stress. The
other simplification is to treat the crack as a
straight-line segment and assume that the strength
of the stress singularity at the end of the idealized
crackis a measure of the stress concentration due to
a thin erack with a small, but nonzero, radius of
curvature at its end. The effeet of the stringer
on the strength of the stress singularity is found
by solving the two similar problems of the cracked
sheet with and without the stringer.  The desired
correction factor previously defined is taken to be
the ratio of the two strengths thus found.

FORMULATION OF BOUNDARY-VALUE PROBLEM

The thin sheet with a crack and attached
stringer is represented in figure 1. _ According to

the orthotropic planc-stress theory of reference 2,
the stress-displacement relations are

1)

where e, and 7 are the direet_and shear stresses,
respectively, £ is Young’s modulus, ¢ is the shear
modulug, and u is the displacement in the z,-direc-
tion. The displacement in the y;-direction is zero
from symmetry. Equilibrium is satisfied if the

%

(o, b}

--Crack

Stringer

{0,-5)

Froure 1.---Cracked sheet witl a reinforeing stringer.
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stresses are given in terms of a stress function 77
as follows:

ot

oY1

ol
or,

Tp—=

An equation of equilibrium for the stringer may
be obtained by considering the portion of the
stringer from the origin to ; as a free body. (Sec
fig. 2.) The displacements in the stringer must
be the same as those in the sheet along the r-axis;
hence, from equation (1) the stress in the stringer

K )
must be o, ij‘l’ where I, 1s Young’s modulus for

the stringer material. The required equilibrium

equation is thus
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where /”is the load in the stringer at #;=0, .1 is the
cross-sectional arca of the stringer, ¢ is the thick-
ness of the sheet, and 77(0,0) has al})lll&lll) been
chosen as zero.

Introduce dimensionless variables and param-
cters as follows:

— N
E ¢
\/ e =0 Sy
n=>by T:*a\/gg‘f
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Fraure 2—Free-body diagram of a segment of the stringer.

500097 59 -2

where ¢ is the direct stress in the sheet at infinity.
The following equations may now be obtained
by eliminating ¢; and 7 from equations (1) and (2):

2 o 20 -
or Ay oy o

which are the Cauchy-Riemann equations. T
follows that
d+iy==> (r+iy) = q>(~ (6)

where ® is an analytic function of the complex
variable z

Because of symmetry, a boundary-value prob-
lem may be formulated for the upper half-plane
only. TFrom equation (3)

¢

o =D (y=0) )
Sinee o,=0 on the crack
=0 (r=0,0=y=1) (8)

From symmetry, u=0 on the line (z=0, y=1) and
at the point (z=0, y=0); therefore,

(x=0,y=1);

=0 (r=0,y=0) @
Since o,—0 and r—0 at infinity,
d~—iz (z—> ) 10

SOLUTION OF BOUNDARY-VALUE PROBLEM

The boundary-value problem just formulated
for & is of the mixed type. However, the problem
may be reduced to the more familiar Dirichlet
type by introducing a new unknown function F
defined as follows: o o

FiE)=d'+ D+l

ay "’)"(

The boundary-value problem for Fis as follows:

)\qb—l_’) (11)

RF)=0 (1=0, y>1) (12)
[(F)=0 (y=0) )

‘ — , } (13)
I{F)=1 (=0, y<l)J

Faz (z—> ) (14)
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The solution for F is found to be

. 2P a+1 ¢ -
=" log ¥ +)\\22+1+,2+1 (15

where the arbitrary constant (' is real and the
radical is positive on the positive real axis. From
equation (11), it follows that

& find=F—il’ (16)

Solving for & with the use of the relationship
® ~—1z at infinity gives

D , z 2— =211 _
‘b:—g\——’l‘y"z‘z‘*—l—{‘(‘-_i)‘z f (—WI: lOg‘\—f +1

U 0) eMde (17)
V1

Interpretation of C.—The stress concentration
factor P for the stringer and the cocfficient ¢ are
as yet unknown. Before proceeding to determine
them as functions of A, it is convenient to show
that C itself is the ratio between the stress con-
centration factors for a cracked sheet with and
without a stringer.

The solution to the problem of determining
the complex stress function for the cracked sheet
without a stringer may be obtained from equations
(15) and (16) by letting A—> e, which is equivalent

to letting v, A—0 since )\:;?mfl- The result is
1t
B,=—iy2241 (18)

The stress field is determined from the derivative
of the stress function, which in the neighborhood
of z=1i (the tip of the erack) behaves as follows:

1
’ LY
~———— (z—>1) 19)

N2i(z—1)
There is evidently a singularity at z=+7. For the
cracked sheet with a stringer,

, C .
RS 21 (z—1)

as is cvident from equation (16) since ®(¥)=0
from cquations (8) and (9). On the line (z=0,
y>1), r=0 and o,=ie®’. Thus, at the tip of

the crack,

or &’

- 7
Or.o @,

~C @1)

and C is evidently the required ratio.

Determination of C and P. ~The two conditions
available for determining the two unknowns I
and ( as functions of X are

$(0)=0
( (22)
P(2)=0
which follow from equations (8) and (9). When

applied to equation (17), these conditions yield

D 0 /op
@(0):~—’~——i+f (i)l
A i\ T

PR

it C
e

> i[O =
®(1) :_%4_, f (2,7? log St

i

) (N dr=0  (23)

By use of equation (24), equation (23) becomes

3 oo s 1
—i+lX (e‘*—])—%—ﬁ(izlog\g—TI !

¢

it
+\“‘?2+1

) eMde=0 (25)

When the log term is integrated by parts, equa-
tions (25) and (24) become, respectively,

. ‘.ZT’fol——ew J‘z§'+(’ .
— - ——"[ ﬂ‘t] :0 2()
i) o T yen 0 #

=] e

P 2P )
T

+ f HEC v ge—o @)
el
Next make the substitution {=iy to obtain

AP (1™ V(O—q
P (e (0o
™ Jo gy 1—n? oy

eMdg=1 (28)
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DY © 1 ,-A\ o (T
——if 1/f4: dn+ ,C Mg mdn=0 (29)
L L Vi1

The definite integrals occurring in equations (28)
and (29) are expressible in terms of known fune-
tions as follows:

* ,__(,—)\ry A .
f ? (17]: I‘ [&()(‘-\') (]-\'
1 mynt—1 Jo

f PR N
1yt

T

by
BN=] f [,(5)— Lol)ds

© =N
f 1" dp= K, (N)
1 yni—1

where K, and K, are modified Bessel functions
of the second kind. It

. Tf—e™™ ‘
B = f — " (30)
oy 1—n?

The funetion B(A) and its first two derivatives
are expressible in terms of the Struve functions
of imaginary argument 7, and 7, and modified
Bessel functions of the first kind 7, and I, as
follows (see ref. 3):

-~

I -
Bo= [l i 0 = L) s (31)
0 41—
1 =2
B y=—| T dy=— 145 (L)~ L]
o y1—n? 2 J

The first integrals of the modified Bessel functions can be expressed as follows:

by
ﬁ L) ds=M 0+ (a0 L) — LN T4 (V)]

(32)
) . 2 -
|7 RN 00 (K0 L)+ K ) Lo V)
]
Equations (28) and (29) may now be written —134_7r)\ BK,+(14+ B K,
== .
_ 2 B4 B f Ry (s) s 36)
YR JA
% BB C=1+B" (33) g
Solution for broken stringer.—For the case in
o (e : which the stringer is broken at z=0, the factor C
;Kf Ko()ds + K,C=K, (34) must be replaced by C* obtained from the solution
A

to the boundary-value problem appropriate for
the broken stringer. The solution to this problem
is casily obtained from the one already given. It
is only necessary to set P= 0 and drop the require-

where, in equation (34), use has been made of the

formuluf [{U(_s)da':g' Equations (33) and (34)

) _ _ ) ment ®(0)=0. The requirement ®$(t)=10 is re-
may be solved for C'and P to give the following tained and leads to equation (34) as before, except
results P=0. Thus,

@© __KI O d
BK,—(1+ B”>f Ky (s)ds =% (37
A

= = 35 .
BKWF”I K, (5)ds (35) Computation of results.—Tables of the modi-
: Tt A

fied Bessel functions are readily available. Values
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of the Struve functions Ly and L, may be obtained
from tables given in reference 4 for the range
0=NZ10 at intervals of 0.1. No tables scemed

A
to be available forf Lo(s)ds; therefore, values of
0

this function for values of A=2 were computed

from a power series. Tor values of X between 2
and 6, it was more convenicnt to compute the

function 2 by mnumerical integration from the

formula

o

Bm:ﬁm (1—g-remey 10 (38)

sin ¢
which was obtained from equation (30) by an
obvious substitution, TFor values of A>6, the
function B was computled from the asymptotic
series
(2n—1)!

1
(n~1)'] [N

which also was obtained from equation (30) by
well-known methods (y=0.57722 is Euler’s con-
stant). TFor the same values of A, the functions 5’
and B’ were computed from the derivatives of
cquation (39).

Results of the compututlons for €, P, and (*
for A< 100 are given in table T within shdc—rulc
The results are also plotted in figures

B(\) ~y+log 2x—2 Z

asymptotic formulas give ¢, P, and (* within
slide-rule accuracy:

1 h
v+log 2\

7T A+0ST
2 y-+log 27

C~1—

(40)

1
% A
C l+2)\

o

NUMERICAL EXAMPLE

Consider a sheet 0.1 inch thick reinforced by a
stringer made of the same material with an arca
of 0.5 square inch. A crack 6 inches long extends
3 inches on cither side of the stringer. The
effective radius of curvature p, at the tip of the
crack is taken to be 0.002 inch.  According to a
well-known formula, the theoretical stress con-
centration factor A, at the tip of the erack is
given by

Ky 1—1—2\/——:1—1—2 =78.6

Yo. 002
In the present example,

_ 2t 2X3X0.1

aceuTacy. 19
3 to 5. TFor values of A>100, the following AT 05 ’
TABLE 1. COMPUTED VALUES OF ¢, P, AND C*
A ¢ P Cc* A ; C P C*
0 0. 637 1. 000 © 1.7 I 0. 699 1. 806 1. 265
L1 . 645 1. 060 4. 06 (.8 : . 701 1. 848 1. 251
.2 . 652 1. [15 2.73 [.9 | . 703 1. 889 1. 239
.3 . 658 1. 168 2.23 2.0 704 1. 930 1. 228
) . 662 1. 219 1. 960 I 3.0 718 2.32 1. 156
) . 667 1. 269 [. 701 | 40 729 2,69 1. 119
.6 . 670 1. 318 | 1. 676 | 5.0 | 737 3.05 1. 096
.7 . 674 1. 366 i 1. 590 i 6.0 7 340 1. 080
.8 L 67T 1. 413 i I. 524 i 7.0 750 3.73 1. 069
.9 . 680 1. 159 1. 472 i © 80 755 1. 06 1. 061
1.0 . 683 1. 504 . 430 9.0 759 4. 38 1. 054
1.1 . 686 1. 549 1. 394 10. 0 763 14.70 1. 049
1.2 . 688 1. 593 1. 365 15.0 777 6. 21 1. 033
1.3 . 691 1. 636 1. 339 20. 0 787 7. 64 ‘ 1. 025
1.4 . 693 1. 679 1. 317 30.0 . 800 10.35 . 1.017
1.5 . 695 1. 722 1. 297 50. 0 ' . 816 15. 40 1. 010
1.6 . 697 1. 764 1. 280 I 100. 0 * . 831 27.0 1. 005
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Fraure 3. -Variation with X of the ratio € of the stress concentration fuetors in a cracked sheet with and without a stringer
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for the case in which the stringer is intact. )\-A 7
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2htE
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Figrre 4. Variation of the stringer stress concentration factor P with A=
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Frorre 5. Variation with X of the ratio C'* of the stress concentration factors in a eracked sheet with and without a stringer
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From table I,
(C=0.688

P=1.593

The eorrected stress conceniration factor K,/ at
the tip of the erack is thus

K'=CK;=0.688<78.6=>54.1

The stress coneentration factor in the stringer is
P=1.593. The Neuber stress concentration fac-
tor Ky for the crack, taking size effect into
account, is (sec ref. 1)

KN:% (1+K,)=27.5

In practical applications, of course, this large stress
concentration factor is considerably reduced when
corrected for the effect of plasticity. (See ref. 1
for details.)

DISCUSSION

Examination of figures 3 to 5 reveals at least
two qualitative features of the results which are
of practical interest. One is the appreciable
stress concentration in the stringer and the other
is the detrimental influence of the stringer once it
has broken. These results confirm intuition.
The stringer is expected to carry part of the load
refused by the sheet beeause of the erack.  If then
the stringer breaks, the two intact halves of the
stringer ecarry load into the region of the sheet

around the middle of the erack which tends to
spread the crack more than if there were no
stringer.

Because of the idealizations made in obtaining
the theoretical solution, some caution should be
observed in applying the results.  In the analysis
the stringer is assumed to be continuously at-
tached to the sheet along a line. In reality the
stringer has some finite width and may be attached
to the sheet by means of rivets. Thus the theo-
retical results cannot be expected to be accurate
for crack lengths shorter than two or three times
the rivet spacing, or two or three times the width
of an integral stiffener.

T.ANGLEY RESEARCH CENTER,
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION,
Laxaney Fienp, Va., December 23, 1957.
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